ABSTRACTS

HEAT AND MASS TRANSFER IN A BINARY TURBULENT
BOUNDARY LAYER DURING THE FORCING OF GASES
THROUGH A VERTICAL POROUS SURFACE UNDER
CONDITIONS OF NATURAL CONVECTION

P, M, Brdlik andl, 8, Molchadskii* UDC 532,517,2:536.25

An approximate analytical solution of heat and mass transfer is given for a binary turbulent boundary
layer developing during natural convection at a vertical surface.

An attempt is made directly to calculate the parameters of permeability as a function of the tangential
stress and heat flux according to an equation obtained for forced flow,

An analysis of the solution is presented with the aim of determining the contribution of the various
physical parameters to heat transfer during the forcing of helium and air.

The solution obtained is compared with a solution achieved earlier by one of the authors, where the
permeability factor was calculated indirectly through the thickness of the boundary layer and the charac-
teristic velocity.

Data are presented on an experimental study on the forcing of CO, and He through a vertical porous
surface under conditions of natural convection, The experimental results are in good agreement with the
analytical solution obtained,

A determination is made of the limits at which there develops an inversion effect associated with a
change in the direction of the velocity in the viscous sublayer of the turbulent boundary layer during the
forcing of CO, through a heated vertical surface,

EFFECT OF RADIATION ON HEAT TRANSFER IN TUBES OF
CIRCULAR CROSS SECTION

D, A, Nusupbekova, Z, B, Sakipov, UDC 536.333
and A, A, Sukhonosov¥

The steady flow of a viscous liquid with constant physical properties in a circular channel, in the
presence of radiative heat exchange, is examined in the article, If the liquid is diathermal the effect of
heat transfer by radiation on the convective heat exchange appears through the boundary conditions [1].
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It is assumed that the radiative heat transfer takes place only in the plane of each cross section, i.e.,
the heat generated in the channel walls in a given section is given off by radiation only in that section, The
error resulting from such an assumption will be sma,ller the smaller the relative width of the channel and
the variation in wall temperature along the length of the channel in comparison to its mean value,

In such a formulation the problem under examination reducestoan integral energy equation [1]
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Having integrated Eq, (1) twice within the limits from Ry = r1/Ty to R, taking into account the boundary con-
ditions (2), we obtain
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If the difference in wall temperatures T1—Tz is small in comparison with Ty and T, then as an approxima-
tion we can take

—T5 ~ 4T (Ty—Ty),

where Ty = (1/2) (T4 + Ty), and we write Eq, (3) in the form
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Thus, the determination of the temperature field comes down to a calculation of the integrals in Eq.
“). Moreover we can obtain integral equations for the heat-exchange coefficients at the inner and outer
walls of the channel ¢4 and @,, In the absence of radiant transfer (¢ = 0) these equations convert into the
well-known equations for convective heat exchange in tubes of circular cross section [2].

The laminar movement of a diathermal gas in a circular channel is examined as a specific example,

NOTATION
T is the flow radius of the tube;
Ty is the inner radius of the tube;
Ty is the outer radius of the tube;
deq =2(ry—Ty) is the equivalent diameter;
=1/Ty is the dimensionless radius of the tube;
31 = 1y/73 is a geometrical parameter;
l is the channel length;
Wy is the velocity of liquid;
w is the average velocity of the liquid;
Wy = wxﬁv is the dimensionless velocity of the liquid;
T is the liquid temperature;
T3, Ty are the temperatures of the inner and outer walls;
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T is the calorimetric average of the liquid temperature;

di, d2 are the heat flux dengities at the inner and outer walls;
dot = d2/q4 is the ratio of heat fluxes;

F, Fy are the areas of the inner and outer walls;

&1, 5 are the emittance of the inner and outer walls;

€re is the reduced emittance;

oo =4.9-107% keal/m? .h . deg is the Stefan—-Boltzmann constant;
oy =qy/(T;=T), 0y =qs/(T,—T) are heat-exchange coefficients at the inner and outer walls;

A is the heat-conduction coefficient;

VT is the coefficient of turbulent transfer of the amount of movement;
Q is the coefficient of turbulent heat transfer;

Pr=v/a is the Prandtl number;

Prp =vy /o is the turbulent Prandtl number,

LITERATURE CITED

1. V. S, Petukhov and L, I, Roizen, "Heat transfer in tubes of circular cross section," Inzh ,-Fiz. Zh.,
6 (1963).

2, V. S, Petukhov, Heat Transfer and Resistance during Liquid Laminar Flow in Tubes [in Russian],
Energiya, Moscow (1967).

DESIGN OF THERMAL INSULATING SHIELDS FOR .
CRYOGENIC VACUUM CHAMBERS

L., N, Bolgarov UDC 536.3:621.528.,1

A zonal method based on the calculation of the averaged characteristics of radiant heat transfer is
used for a calculation of the basic parameters of chevron shields for cryogenic vacuum chambers: the
transmission capacity & and the transmission coefficient of thermal radiation 7,

The plane problem of radiant heat transfer to an element of an optically opaque chevron shield Fig.
1) consisting of the edge surfaces Fy,, Fg, Fy, and F, the entrance surface F,, and the exhaust surface Fy
is examined with a derivation of the equations, For a more precise calculation the surfaces F, and ¥y, are

divided into m identical sections, designated as Fy and ¥, while the surfaces Fy, F, Fy, and Fg aredivided
into n sections, designated as ¥z, F,, Fy, and F.,

The calculating equations obtained have the form

M= "1y -+ N, §y)

ThZ%i iohir (2
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Here & is the mean allowed angular coefficient of radiation from
the surface Fy to the surface Fy; By4 is the mean allowed angular coef-
Fig.1 ficient of radiation to the surface Fj {(i=1,p, q, ) from the surface

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol, 21, No, 6, pp.1112-1113, December, 1971,
Original article submitted January 25, 1971; abstract submitted April 29, 1971.
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Fi; Eres.a is the resultant radiation flux density of the surface Fy; Ejpg gy, is the internal radiation flux
density of the shield.

The transmission capacity @ is also determined from Eq, (2); in this case it is assumed that the ex-
haust gases do not condense on the shield surfaces (the coefficient of reflection of its surfaces is R = 1),
while the conditions of interaction of the molecular fluxes from the surfaces of the shield are identical to
the conditions for radiant heat transfer.

Calculating equations are presented for the angular coefficients of radiant heat transfer between the
surface elements of the shield which are necessary for computing the allowed angular coefficients &y and
®jj. Calculations were made on a computer to determine the transmission capacity @ and the coefficient
of transmission of thermal radiation 1y as a function of the coefficient of reflection of the shield R and its
geometrical dimensions (ratio of edge length to spacing b/a and angle between edges 7). The results of the
calculation are presented in the form of graphs of 7y(b/a, v, R) and o (b/a, v).

TEMPERATURE FIELD OF MEASURING COMPARTMENT
IN HEATED FILAMENT METHOD

E, V, Koval'skii and Yu. L, Rastorguev UDC 536.2,08

In an experimental determination of the coefficient of thermal conductivity of gases and liquids by the
heated filament method it is agsumed that the outer resistance thermometer measures the temperature of
the outer surface of the glass capillary.

In reality the thermal resistance will be lower in the zones of contact of the thermometer coils with
the capillary than where it is not in contact., Therefore, the temperature field will not be uniform along the
length of the measuring compartment and the temperature measured by the resistance thermometer will
differ from the average temperature at the outer surface of the capillary.

z
SN
4
Fig,1. Diagram of measuring compartment:
1~ 1) platinum heating filament; 2) platinum
filament of outer resistance thermometer;
3) glass capillary; 4) thermostatic block.
Solid line: temperature in section 0~ 0; dash

and dot line: average temperature; dashed
line: computed temperature,
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For a quantitative estimate of the effect of nonuniformity of the temperature field on the accuracy
of determining the coefficient of thermal conductivity the problem of the temperature distribution in the
measuring compartment in the heated filament method was solved on a computer by the grid method.

In solving the problem the following assumptions were made: 1) the outer thermometer is wound on
the capillary not in the form of a spiral but in the form of rings with a spacing /; 2) the temperature of the
inner resistance thermometer filament is constant and equal to t; Fig,1); 3) the temperature of the auto-
clave wall is also constant and equal to ty; 4) the temperature field is symmetrical with respect to the axis
of the measuring compartment; 5) the heat in the layer between the measuring compartment and the auto-
clave is transferred by thermal conduction; 6) the thermal conduction coefficients of the medium being
studied A4, the glass capillary A, and the platinum Ay do not depend on the temperature; 7) there is no heat
flux through the sections 0—0 and I-1 (Fig,1), i.e., —A(8t/8z)|,_, = 0 and —A(3t/dz)] i = 00

The plane problem of thermal conduction obtained taking into account the different thermal conduc-
tion coefficients and the curvature was solved by the grid method with steps of 0,02 mm,

The calculations showed that, as a result of distortion of the temperature field, the platinum filament
of the outer resistance thermometer has a lower temperature than the average temperature of the outer
surface of the capillary, The nonuniformity of the temperature field decreases at the capillary wall, which
leads to a more uniform temperature distribution in the measuring space, Graphs of the temperature vari~
ation along the radius of the measuring compartment, and the actual and computed temperature drops At,
and At, are shown in Fig, 1. Since At, < At,, the experimental values of the thermal-conduction coefficient
obtained are too low, The error in determining the thermal-conduction coefficient depends on the dimen~
sions of the measuring compartment, the spacing of the outer resistance thermometer winding, and the
thermal-conduction coefficient of the medium being studied, The error grows with an increase in the ther-
mal-conduction coefficient of the substance studied and decreases with an increase in the diameter of the
capillary,

For a measuring compartment with dimensions ry = 0,05 mm, ry = 0,47 mm, ry = 0,85 mm, vy = 6,21
mm, and { = 1,36 mm the error in a calculation of the thermal-conduction coefficient without taking into
account the nonuniformity of its temperature field is 0.8% for air, 1,3% for toluene, and 1,9% for water,

DETERMINATION OF HEAT RELEASE FUNCTION IN
COMBUSTION CHAMBERS WITH TRANSIENT
FUEL SUPPLY

Yu. V. Seleznev UDC 536.14

From the point of view of energetics a heat release function can be represented in the form of a de~
layed function of the fuel supply which is the potential carrier of the energy of heat release:

E =0 (t— ). (1

During the period 7; the breakup of the fuel stream into individual drops, the formation and develop-
ment of the fuel plume, the heating and vaporizing of the individual drops, the diffusion of the vapors and
formation of the burning mixture, and finally the burning process itself take place, It should be noted that
not all the heat introduced with the fuel is used in the combustion chamber, Part of the heat is lost because
of heat exchange and from blowout through combustion chamber leakage., These losses can be expressed
through a supplemental period AT; of the delay argument, causing an equivalent decrease in the heat re-
lease function, The nature of the function T; =£(T) can be expressed through the initial parameters and

Khar'kov Institute of Radioelectronics, Translated from Inzhenerno-Fizicheskii Zhurnal, Vol,21,
No. 6, pp.1114-1115, December, 1971, Original article submitted November 2, 1970; abstract submitted
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boundary conditions. The boundary conditions are determined by the parameters of the fuel-supply system,
the physicochemical parameters of the fuel, and the temperature of the surrounding walls. The initial con-
ditions are determined by the gas—thermodynamic parameters of the air and the geometrical parametersg
of the fuel plumes at the moment of initial combustion,

The following generalized equation of relative heat release is obtained for diesel combustion cham-
bers:
E=§;—msin2nf,, (2)

where

My I, m, 1,
§, = . (Pio— ) + E[‘—expﬂd(@m —¢. " (3)

in
represents the relative heat release for a linear fuel supply function.

For existing diesels the combustion chamber criteria which can be determined depend on the con-
struction parameters of the chamber and the fuel apparatus and on the gas—thermodynamic parameters of
the air charge,

The criterion II, characterizes the heat loss due to heat exchange and blowout through piston ring
leakage, I, how fully the fuel injected into the combustion chamber is used which depends on the condition
of the sprayer, Il the initial reaction rate, depending on the fuel, the volume of the plumes, and the dura-
tion of the injection (the heat release rate grows with an increase in Ilg), and Il the turbulent diffusiontime
of the air charge into the burning zone (the heat release rate decreases with increase in IT;)). II, decreases
with an increase in the coefficient of air surplus and the rate of movement of the air charge.

For existing undivided diesel combustion chambers II, = 0,008-0.028, II, = (0.9-1.0) gins lig = 8-28,
I, =1.1-2.3, and m = 0-0.1.

NOTATION
T is the running time from the moment of fuel injection;
Tip is the delay period of self-ignition (induction period);
Ti is the delay period of heat release;
c is the time function of the relative fuel supply;
DTy Gios 9 are the relative values of the parameters T, 7y;, T; reduced to the period of the work-
ing stroke of the diesel;
@in is the reduced fuel injection time;
I, g, g, I, are empirical dimensionless parameters characterizing the combustion chamber;
m is a characteristic of the fuel-supply system,

LITERATURE CITED

1. S. B, Norkin, Second-Order Differential Equations with Delayed Arguments [in Russian], Nauka, Mos~
cow (1965), ) ’

2. A, Tigscher and D, Bellman, Combustion Instability in an Acid—Heptane Rocket with a Pressurized-
Gas Propellant Pumping System, NASA, Technical Notes, No,2936, USA (1953).

3. I,I, Broeze, Combustion in Piston Engines, Haarlem—Antwerpen—Keulen (1968).

1582



INDUCTION ACCELERATION OF CONDUCTORS
AND OF PLASMA

P, M, Kolesnikov, N, 8, Kolesnikova, UDC 538.323;533.9
and I, B, Gavris

The paper presents a study of transient electromagnetic processes and the acceleration of a plasma
in a pulsed accelerator with inductive coupling of the plasma and the primary circuit,

As a mathematical model we consider the transient processes in the primary electrical circuit, con~
sisting of a stationary coil, in which a capacitor bank is discharged through a resistance and an inductance.
A current is induced in a movable coil, which is coaxial with the stationary coil, during the current dis-
charge; its action with the currents in the primary circuit leads to the acceleration of the movable coil,
The fundamental equations that describe the induction acceleration of a single coil and the transient pro-
cesses in the accelerator circuit, in dimensionless form, are

¢y _ ol lfpély{*K; 2 4 Ej (1)
di? Vitye ‘ ay + y*
dp; . d { ,[’2 . 2 } . (2)
ta, — —Ek|K—__ E Lo — =0,
dT “ dt * ( k ) k }T 19 P
A 3
T Py ( )
do, d ( T/ 2 3 2 7 .
P ‘;‘94——{%“—‘——/3\)1(——5]:‘ T oy =0, (4)
dt arv R / k

where y is the path traversed by the plasma being accelerated; y' is the velocity of the plasma; ¢y is the
current in the primary circuit; ¢,' is the current in the movable circuit; ¢y is the voltage across the wind-
ings of the capacitor; K and E are elliptic integrals of the first kind and of the second kind, respectively;

k is their modulus; and 7 is the time, The quantities q, a4, ay, ay, a4, a5, ¢, &3 are dimensionless param-
eters,

The system of equations (1)~ @) was solved numerically for repeatedly varying values of the param-
eters with the initial conditions: for 7 = 0, we have ¢! = @' =y' = 0; ¢ = 1; y = 0.1.

As a result of the investigation of the system of equations (1)~ 4) we establish that, in induction ac-
celerators, the plasma velocities attain maximum values in a shorter time, the value of the parameter q
has a weaker effect on the relative variation of the velocity compared with the usual electrode accelerator,
and the variation in velocity rapidly attains its maximum value (Fig, 1). In Fig, 1 the numerals on the curves
correspond to the values of the parameters: a; =ay =a,=0.5; ¢; =0 =0,1;1) g =1, ay = 0; 2) g =4, a9=0;
Ha=1,8,=04)q=1,8,=1;5)q=4,a =1; 6) q = 10, a3 = 1,0,

On the curve of the variation of the discharge current in the
, primary circuit near the current maximum a dip appears, This is

/‘—— v characteristic for many experimental devices; the dip indicates that
/—‘ . s . s . 1
a6 — s there is an induction interaction in the accelerators., The discharge
a4 //,/ LV WY currents in the movable circuit are comparable in magnitude with
’ —— vt the discharge currents in the primary circuit,
92 ] \\ \ ) \\ \\ \\
1 r 213456 It is shown that using such a scheme we can describe and model
0 P 2 p the acceleration stratified on separate plasmoids, interacting with
each other according to an induction method, and an estimate is made
Fig. 1 of the effect of the motion of one plasmoid on the others, and on the

entire system,

Institute of Heat and Mass Exchange, Academy of Sciences of the Belorussian SSR, Minsk, Translated
from Inzhenerno-Fizicheskii Zhurnal, Vol,21, No. 6, pp.1115-1116, December, 1971, Original article sub-
mitted January 13, 1971; abstract submitted May 20, 1971,
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ACCELERATION OF A PLASMA IN A COAXIAL
ACCELERATOR WITH AN OPTIMAL INDUCTIVE
ENERGY ACCUMULATOR

P, M, Kolesnikov, N, 8§, Kolesnikova, UDC 538,323:533.9
and 1, B, Gavris

The paper considers the combined operation of a coaxial plasma accelerator and an induction energy
accumulator with a ferromagnetic core for minimum energy losses in the induction accumulator, when the
current source ensures the following law of current variation [1]:

= A(shat 4 bchat), (1)

where I is the current of the charge cycle; A, a, and b are constants; and t is the time, Inthis case the
equations describing the transient processes in the circuits and the acceleration of the plasma with account
of mass-transport processes, ih dimensionless variables, take the form

ayp.

o T
v _ (3)
dr ’

d . , ,

72 = & P — Vab® - 159 A VAP — Vs Vel (4)

49’ 5
(+9) by 4oy —BehT—ashT=0, (5)

where y is the path traversed by the plasma of mass u to be accelerated; y' is the velocity of the plasma;
T is the time; ¢' is the discharge current; and q, @, 58,7y, Vs, V3, Y4, V5, Y are dimensionless parameters of
the system, Equationg (2)-(3) are the law of motion of the plasma under the action of magnetic-pressure
forces; Equation (4) describes the kinetics of the mass-transfer processes in the plasma, taking account of dif-
fusion of particles, two-particle and three-particle recombination of plasma, anode and cathode sputtering,
and the drag of the neutral gas [2]; Equation (5) is the second Kirchhoff law for a charge — discharge circuit,

The system (2)-(5) was solved numerically for the variable quantities that appear in its parameters
and the initial conditions: for T=0we have y =y' = ¢' = 0, u =1,

Regults of the numerical investigation show that an induction energy accumulator having an optimal
law of current variation in the charging circuit both substantially changes the character of the trangient
processes in the accumulator—accelerator system, and also improves the characteristics of the plasma
being accelerated; it can ensure an increase in the velocity of the plasma of several orders of magnitude
in comparison with the same accelerator, but having a nonoptimal law of variation in the charging circuit
[3]. In the figures curves are presented for the variation of y, y', and ¢' as functions of the parameters
of the system and of the time, A calculation of the transient processes in an accelerator with an induction
accumulator is presented, and the characteristics of the accelerators being investigated are compared.
The effect of masgs-transport processes on the characteristics of the plasma being accelerated is investi-
gated; it is shown that these processes have a considerable effect.
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THE THEORY OF HEAT TRANSFER IN NUCLEATE
POOL BOILING

A, A, Voloshko UDC 536.423.1

An analytical method for calculating the heat flux density from a heating surface is described on the
basis of a theoretical and experimental study of the physical characteristics of nucleate boiling, The meth-
od is based on the equation

n r A
g =5 [d3np (10" -+ crp'¢'8T), (1

in which the first term represents the heat flux density associated with phase conversion and the second
term corresponds to the heat flux density spent in heating the liquid transported by vapor bubbles from the
wall boundary layer into the main volume,

In the calculation of the heat-transfer rate a relation proposed by Labuntsov [1] is used to estimate
the density of active vaporization centers, and an expression derived in {2] is used to determine the aver-
age volumetric velocity of the vapor phase released from one center, In dimensionless form the equation
appears as follows:

205 R 8T
Nu, = e CoCi vV 20 (6) Ki2Ja? (1 Tln Ja). (2)
From Eq, 2) we obtain
8T 20; S
for o Ja <1 Nu, = 71 CoCy Y 29 () Ki2Ja?, (3)
8T 20m 6T e
for ¢n yva Ja» 1 Nu,= Y Cy Cilm a 1 2¢ (6) Kt2Ja3. (4)

Equations (3) and () show that the power exponent of the Jakob number Ja changes in general, depend-~
ing on the values of Ja, which in turn depends significantly on the saturation pressure, The criterion Ja is
a measure of the ratio between the quantity of heat spent in heating unit volume of the liquid and the volu~-
metric heat of vaporization, Equations (3) and () therefore reflect the dominant influence of either of the
two indicated terms of the total heat flux density,

We have compared the criterial equation (2) with the results of voluminous experimental studies for
a wide range of the controlling parameters, We obtained satisfactory qualitative and quantitative agree-
ment,

NOTATION
04 a

Nos = VS 5

=_ (") a
K p'c'oTs, ]/(p' —07eg’
Ja = (p'c'AT)/p"r;
o is the heat-transfer coefficient;
q is the heat flux density;
Al is the thermal conductivity of the liquid;
pi, p" are the densities of the liquid and vapor;
o is the coefficient of surface tension;
r is the latent heat of vaporization;
c! is the specific heat of the liquid;
AT =T ~Tg;
Tw is the wall temperature of the heating surface;
Ty is the saturation temperature;
6T =Tg-T;
T is the temperature of the liquid in the wall layer;

Technical Institute of Fishing and Fisheries, Astrakhan', Translated from Inzhenerno-Fizicheskii
Zhurnal, Vol. 21, No, 6, p.1118, December, 1971, Original article submitted December 29, 1970; abstract
submitted March 4, 1971,
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g is the acceleration of gravity;

do is the bubble breakoff diameter;

np is the density of active vaporization centers;
f is the bubble breakoff frequency;

6 is the extremal macroscopic wetting angle;
(6 is a function of the limiting angle;

Cy, Ci,y oy are numerical coefficients,
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INCEPTION OF FORCED-CIRCULATION NUCLEATE
BOILING OF A LIQUID

V. A, Chernobai UDC 536.423,1

An analytical solution is given for the problem of determining the appropriate conditions for the in-
ception of forced-circulation nucleate boiling,

A golution scheme is investigated for determining the bubble apex temperature and the temperature
gradient as a function of the apex coordinate; the scheme is analogous to one proposed by M, V, Aleksan~
drov, Inthe present study, however, another equation is used for the temperature field and the tempera-
ture gradient in the liquid, and a different technique is used to account for convective heat transfer and its
relationship with the hydrodynamics of forced circulation, These modifications make it possible to deduce
equations that can readily be solved for any of the variables characterizing the conditions for the inception
of nucleate boiling: gy, Tvivb—Ts, ATID "and pWyy,.

The final solution is tested by processing of the author's and other researchers' experimental data
for water, ethylene glycol, ethyl alcohol, and butyl alcohol, The deviation of the experimental data does not
exceed x15%.

The results of a comparison of the solution for g;}, and T%\E’—Ts with the calculated relations recom-
mended by other authors show that the relations proposed in the article well describe the conditions for the
inception of nucleate boiling of a liquid in the case of forced circulation,

NOTATION

is the heat flux density;

is the temperature;

is the density of the liquid;
is the velocity of the liquid,

o Heo

Subscripts and Superscripts

ib denotes inception of boiling;
w denotes the wall;

s denotes saturation;

vh  denotes underheating,

Kiev Polytechnic Institute, Translated from Inzhenerno-Fizicheskii Zhurnal, Vol,21, No. 6, p,1119,
December, 1971, Original article submitted December 17, 1970; abstract submitted April 5, 1971,
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TEMPERATURE FIELDS AND STRESSES IN JOINED PLATES
HAVING DIFFERENT HEAT-EXCHANGE COEFFICIENTS

Yu, M, Kolyano and L. A, Gavur* UDC 539,377

A system of two isotropic semiinfinite plates of uniform material butt-joined using a thin interstitial
layer having internal thermal resistance is examined in the work, Heat exchange takes place through the
surface z = =6 of the system with the external medium according to Newton's law. The temperatures of the
media flowing over each plate and the coefficients of heat exchange with the lateral surfaces of the plates
are different and constant, The initial temperature tinis assumed to be congtant, A solution of the bound-
ary problem for the system under examination is obtained using a Laplace transformation with respect to
time, The temperature field is presented for the case when the temperature of the external medium is the
same everywhere, In particular, when the thermal resistance of the interstitial layer is equal to zero the
temperature field takes the form

X A

1
Ti=te+ (f,— te)exp (— ax?.r) erf (2 Var ) + P (i~ %)

T

X exp {— ax'fr) } exp [a (uf — nfij)g —
d .

x? J dg
dat=8 1 yiE =17
where T is the time; tg is the temperature of the external medium; %y = v@; /A8, @y, A, and a are coefficients
of heat exchange, thermal conduction, and thermal diffusion; and 26 is the thickness of the plates,

Numerical calculations of the temperature field and temperature stresses at the junction boundary
of the plates are presented for the latter case, In this connection it is assumed that the Biot number Bi,
is equal to unity at the surface of the lower plate, while for the surface of the upper plate the Biot numbers
are taken as Biy =0, 0,1, 0,5, and 1,

NONSTATIONARY HEATING OF A LAMINAR
STRUCTURE WITH A CURRENT

I, A, Zhvaniya and G, A, Tkhort UDC 536.2

The question of nonstationary heating of nonuniform media has been widely discussed in the litera-
ture [1, 2}, but little attention has been paid to current systems, Ag is known, the Peltier effect occurs
when a current flows through the contact between two materials in the presence of a material with a ther-
mal electromotive force different from zero, while Joule and Thompson heat is evolved in the volume of
the materials (we shall restrict the examination to isotropic bodies).

The boundary problem of nonstationary thermal conduction for a laminar structure with a current is
solved first in the article, The solution is found by a method developed by A, Daisev [3], A system of in-
tegral equations of Volterra's second kind which always has a solution is obtained for the contact tempera-
tures of the neighboring layers. Knowing these solutions, the spatial~temporal temperature distribution
is easy to find in the form of quadratureg, The solution of the stationary problem is found as a particular
case (asymptotic),

*Physicomechanical Institute, Academy of Sciences of the Ukrainian SSR, Ltyov, Translated from
Inzhenerno-Fizicheskii Zhurnal, Vol.21, No, 6, pp.1119-1120, December, 1971, Original article submitted
August 14, 1970; abstract submitted April 7, 1971,
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article submiited December 28, 1970; abstract submitted April 19, 1971,
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COOLING AND HEATING OF FLAT STEEL BARS

N, I, Yalovoi, L, V, Sudoplatov, UDC 669.18-41.065
and N, Yu. Taits

The temperature field of a steel bar before it is put into the heating oven depends on a multitude of
prior factors, principal amongst which are the duration of standing in the mold and of cooling in the air of
the bars.

In the article an attempt is made to obtain a general analytical solution incorporating all the thermal
processes taking place after the flat bar fully solidifies — cooling in the mold and in the air and heating
under the roller — since in practice these processes are organically related to one another, In this case
we assume that the bar is fully solidified while in the mold {consequently, the more complicated case of the
air cooling and oven heating of a bar with a liquid core is excluded from the examination), We also assume
that:

a) the bar consists of an unbounded plate;

b) the temperature distribution through a section of the bar conforms to a linear function at the mo-
ment of its full solidification {his is taken as the starting moment for our problem);

c) heat exchange between the surface of the bar and the medium surrounding it takes place according
to Newton's law, where the heat-exchange coefficient and the temperature of the surrounding me-
dium are known functions of the time;

d) the thermophysical properties of the bar material are constant,

A function of the bar temperature, which was found using an integral Laplace—Carson transformation,
is written in the following form:
Fo
v (X, Fo) = § Bi () [oe () — vyy] Dy (Fo — £, X) di — Av,y [@q (Fo, X) — @5 (Fo, X)]-+ Ag, (1 —X), (1)
0 .

where

@, (Fo, X) =1 +2 ¥ (— 1)f exp (- n%? Fo) cos kX
k=1

1 < exp (— a**Fo)
@, (Fo, X)*Fo4——3——X+——221 — cos kX,

1 X2 < » exp (— n%k*Fo)
@y (Fo, X) =Fo—— += WQ}; (D g cos kX,
v(X, Fo)is the dimensionless temperature function; X is a relative coordinate; Bi (Fo) is the Biot number;
Fo is the Fourier number; vy, (Fo) is the dimensionless temperature of the surrounding medium; Avy is the

initial temperature drop across the section of the bar.

M, I, Argenichev Dneprodzerzhinsk Industrial Institute, Translated from Inzhenerno-Fizicheskii
Zhurnal, Vol,21, No, 6, pp.1120-1121, December, 1971, Original article submitted May 7, 1970; abstract
submitted February 22, 1971,
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The unknown function VX=; which enters into Eq, (1) must be determined from an integral Volterra
equation of the second kind, which can be obtained if we set X =1 in Eq, (1).

NONSTEADY TEMPERATURE FIELD OF A BODY WHEN
THE THERMAL-CONDUCTIVITY COEFFICIENT OF THE
MATERIALS IS A FUNCTION OF TEMPERATURE

O, T, Il'chenko and L, I, Shifan UDC 536.21

The problem considered is that of the temperature field in a solid body for boundary conditions that
vary with time, when the thermal-conductivity coefficient of the material is a function of the temperature
of the body, and the variation of the thermal-diffusivity coefficient is such that we can assume that it is
equal to the average value over the entire range of variation,

Applying a Kirchhoff transformation to the original system of equations in the case of a linear tem-
perature dependence for the thermal-conductivity coefficient, we obtain

0B (x, 1) — P (x, 1) (1
A S
D (x, 0)=0, (2
aqs(g, Do,
Ox
0P (1, 1) B,(){l/ i [ 1 - 2%, , 2] (3
—— = DBI{T
o b(@s— D) | b(D— By | (B — By
l/ I i %, = (4)
_ [ + LB (1, r)} ,
b(bg— @) Lb(@g— ) | (D, — D)
where
- _ bT2(x, T) . - AT
&, =T, r)+--£2’-‘——9—, &= C(T()wz(T)’
PG 0= @ (x, 1) —Dp
¢s(r)—¢l’1

We assume a solution of Eq, (1) with boundary conditions @2)-{) by the method discussed in [1, 2] by
means of successive approximations of the nonlinear boundary condition (4).

As a zeroth approximation we assume a linear boundary condition, when Bigong(r) = Bi(r). In prob-
lems with T, (1) = Téna:x = const, the zeroth approximation of condition (4) has the form

—aqi(;_’—ﬂ—-:Bi (17)[1——6(1, ()8 (5)
x

The method discussed is illustrated by examples of the solution of problems with boundary conditions
that are both constant and variable with time, The results of the calculation are compared with the data of
electromodeling on a grid according to the method of Libman,

Polytechnical Institute, Khar'kov, Translated fromInzhenerno-Fizicheskii Zhurnal, Vol,.21, No, 6,
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PROGRESSION OF THE CRYSTALLIZATION FRONT
DURING CONVECTIVE COOLING

Yu. 5. Postol'nik UDC 536.248.2

The problem of the progression of the crystallization front is solved approximately by the method
of averaging functional corrections,

The paper derives an expression which defines the position of the crystallization front l(r) during
solidification of a plate (m = 0), a cylinder (m = 1), or a sphere (m =2):

T
H* () [1 4B D)+ B (D] K. Ko’ (1)
where
e @) = 2—1—Bi1. [I_Q(I—m—l—Bil)(l——l)””"—(l‘—l—m)Bil(l—l) ]; @
2(1 4 m) By (1 —m) (2 Biy)
2(2 + Biy) [2m 4 (1 + m) Biy] 2 Biy
o= 3KaBE, H* () (=g (=57
n 6 [(1 4+ m) BiZ — (1 2m) Bi;—2m] Biy/* —4 [(1 4 2m) Bi, — m] Bi%® 4 3m Bi} 1*} ] (3)
12 (2 4+ Biy) [2m 4 (1 4 m) B}
n— 8[(1—m)(3+Bi) —3(l —m+Bi) (1 —H*"+ @+ m) Biy (1 — 97 i (4)
P = 92+ m) Po [(1— m) (24 Biy) —2 (1—m + Biy) (1 — )7 -+ (1 +m) Bi, (1—07]"
ay ayt 9cva
=2, g=—— =Fo; Ko=—7"""—; 5
Ka a t R o Ko Y161 (TC.—Tm) (5)
. A _ro
o=t (TR

q, is the latent heat of crystallization; a;, is the thermal diffusivity; v, is the density; ¢, is the specific heat;
Ty, To, T are the initial, the crystallization, and the ambient temperature, respectively; r ) is the thick-
ness of the solidified layer; 2R is the plate thickness or the cylinder (sphere) diameter; the subscript v =1
refers to the solid {frozen) phase and subscript ¥ = 2 refers to the liquid (wet) phase.

The additive terms B;() (3) and 5 () (4) appearing in Eq. (1) account for the actual heat in the solid
phase and the initial superheat in the liquid phase, respectively,

For I(r, = 1), from Egs. (1) and @) we get the following formula determining the time 7, of complete
crystallization:

2 - Bi,

Te= mKaKO[I 48 (1) -+ B2 (1)1 (6)

The structure of Egs, (1) and (6) confirms the validity of the recommended procedure for taking into
account the heat contents of the liquid and the solid phase by means of corresponding increases in the latent
heat of crystallization.

M. I,Arsenichev Dneprodzerzhinsk Industrial Institute, Translated from Inzhenerno-Fizicheskii Zhurnal,
Vol, 21, No. 6, pp. 1122-1123, December, 1971, Original article submitted December 8, 1970; abstract submitted
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For practical use, all relations are represented in the form of graphs which facilitate calculations
with any values of parameters K,, Ko, Po, and Bij, The procedure for graphical solutionisillustrated on
a specific numerical example,

It is noted that disregarding the heat contents of the solid and the liquid phase may result in large
errors (46% in the illustrative example).

DIFFUSION IN BINARY SYSTEMS IN A NONUNIFORM
MAGNETIC FIELD

L, S, Atroshchenko, S, M, Voronina, UDC 538.4
and V, N, Panasenko

The diffusion process is investigated in a binary mixture the components of which have different mag-
netic susceptibilities. The magnetic susceptibility of one component is greater than that of the other, Dif-
fusion takes place in a closed volume in a nonuniform magnetic field, bringing about a redistribution of the
components in the mixture,

We consider the plane problem, where the nonuniformity of the magnetic field is directed along the
x axis. Chemical reactions do not take place between the components, and there are no sources or sinks
in the volume, The diffusivity and magnetic susceptibility are constant,

It is assumed that at the initial time the components are uniformly distributed throughout the entire
volume, Upon application of the field, which is a maximum at the coordinate origin, the components be-
come redistributed in the volume with the passage of time,

When dynamic equilibrium is reached, the concentration attains a constant value in the steady-state
concentration profile at the concentration limits,

The problem is investigated for the case in which the magnetic field strength is described by the

function
Hw=t, | 1- %,

In the solution of the problem the eigenvalues and eigenfunctions are determined, A table of eigen-
values is given,

The solution of the problem consists of two terms, one of which describes the concentration profile
in the interior volume when dynamic equilibrium is reached, while the other describes the time variation
of the concentration field,

A numerical calculation is carried out for a binary mixture having definite physical properties, The
concentration profile of the mixture components as a function of the magnetic field strength is obtained,
The domain of applicability of the resulting formulas is determined, A procedure is given for the approxi-
mate calculation of the concentration profile outside the domain of applicability ofthe formulas.

Donets State University, Translated from Inzhenerno-Fizicheskii Zhurnal, Vol, 21, No, 6, pp. 1123-
1124, December, 1971, Original article submitted July 3, 1970; abstract submitted April 29, 1971,
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DISPERSE COMPOSITION OF DROPLETS FORMED IN
THE DISINTEGRATION OF A JET

V. B, Lemberskii and M, B, Ferber UDC 532,522

The size distributions of droplets are determined on the basis of the analogy between a system of
droplets and a gas or are described by empirical equations. Neither approach takes the jet disintegration
process into account, On the other hand, observations of the disintegration of jets show that the jet becomes
detached at locations of wave separation. Therefore, the size distribution of the droplets is characterized
by wave growth on the surface of the jet, Inasmuch as the amplitude variation is determined by the growth
rate @, it is necessary to associate with the probability density function W for the formation of a droplet
of diameter & the corresponding coefficient & for the given diameter.

In the elementary case of axisymmetric perturbations the dependence of the density function on the
coefficient o has the form

: a? (8)/N for 8= &, (1
0 for 8 < &,

— Sn
&

where &; = 1.68d is the minimum droplet diameter, and N = | & (§)dé is a normalization factor,

o

Substituting the formula for az(é) [1] into Eq. (1), we obtain

5 6
122—L[ 1—292 (—d—> or 65 8,
W = 8 5/ (2)

Q for & < §,,

where d is the diameter of the jet,

In the case of atomization the density function W is represented as follows:

o (8)/N1 for’ Smin<L O < Bmax,
W= { {3)
0 for. § < 6mm» 6> amax‘
6[11,%)( o ., -
where Ny = | (5)dé is a normalization factor; émip = ®B/pWe)l/3; 6ax = B/3)1/3 are the minimum
Smin

and maximum droplet diameters; and B is an empirical coefficient,

Describing the dependence ¢ (6) by an expression derived in [2], we find

Ny Re i (4)

3 8)3 —
B (d/8) ( A B (d/8) VWej 50T Sunin <6 < B,
W = N ’
0 for & < (Sminv 8 > 6ma‘(~

where A = ‘/(We/Rez) B2(d/6)6-— B@d/6)? + pWe; We = (pluzd)/Z(r is the Weber number; Re = p;ud/2y is the

3

w 7w
. A Fig.1, Probability density function W versus

16 » / ’A diameter 6 of the drops formed, a) Histogram
42 . based on authors' experimental data; 6, mm;

.3\ 2 solid curve calculated according to Eq. (2); b)
98 AN x\ based on data of [2]; 6, #; solid curve calcu-
= N - 10 4} ) lated according to Eq, @); W, mm™,
‘ZB 12 15 20 24 280 20 4w &0 &0 5
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Reynolds number; p = pz/ Py; Py is the density of the liquid; p, is the density of the surrounding medium; y is
the liquid exit flow velocity; o is the coefficient of surfacetension; and p isthe dynamic viscosity coefficient,

The calculations according to Eq, (2) are compared with the authors' own experimental data,and those
according to Eq, {4) are compared with the data of [2] on the atomization of diesel fuel Fig,1), Theanalyti~
cal and experimental results exhibit good agreement,
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GRAVITY DISCHARGE OF A LOOSE MATERIAL
FROM A CLOSED CONTAINER

V. E, Davidson, A, P, Tolstopyat, UDC 532,529.5
and N, P, Fedorin

Experiments were performed using a flat bin with transparent walls and a slot through the bottom,
The slot width was b = 0.83f and the slot length varied within 0,15 = b/e = 4.0; f denotes the bin width and
a, b the respective slot dimensions, Quartz sand was used as the loose material, The flow rate of the
loose material was determined by recording its dropping level in the bin cinematographically and also by
the weighing method. A comparison between K(6) from an open bin (1) and a closed bin (2), where K de-
notes the dimensionless flow rate (per sec) of the loose material and 6 denotes the reduced diameter of the
outlet hole in the bin bottom [1], is shown in Fig,1, The lower dimensionless flow rate from the closed bin
is explained by a rarefaction above the surface of loose material due to the evacuation of the bin, The ac-
companying pressure drop generates a countercurrent of air, which in turn reduces the flow rate of the
loose material, The vertical distribution of air pressure across the layer of loose material during dig-
charge fromthe closed bin is shown in Fig.2. As can be seen here, at H< 0.5 (T{ =h/b is the referred
height of the layer) the gage pressure p is zero, i.e., atmospheric pressure prevails in the region below
the dynamic concave surface of loose material and, consequently, the hypothesis proposed in [2] that there
exists a pressure gradient in the space below the concave surface has not been confirmed by our experiment,

The effect of a discharge hole on the pressure distribution in a layer of loose material extends to the height
H~r2,

Since the flow rate of loose material is lower from a closed bin than from an open bin, we tried to re-
cover the drop in the flow rate by injecting air through the lid of the bin, The flow rate of air necessary

K (]
o (-] a. 2 ey 8
-] o [ -] \
06 ! 9 Fig.1. Comparison between dimensionless
! ',‘.\ flow rates of loose material from an open
3 ae and a closed bin: 1) open bin; 2) closed bin;
. oe —~— b s das s
T 2 a) weighing method; b) cinematography.
\
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for restoring the flow rate of loose material is related to the latter as follows:
Gg;8A10‘4G,

where Gg is the flow rate of gas and G is the mass flow rate of loose material,
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THE PHENOMENON OF HYDRAULIC INDUCTION
IN THE TRANSIENT FLOW OF AN INCOMPRESSIBLE
VISCOUS FLUID

G. G, Zel'kin UDC 532.5

The method of transfer characteristics has been proposed in [1] and developed in [2, 3] for studies
of the transient flow of incompressible viscous fluids through hydro systems with long pipelines and local
constrictions, but it is evident that the results of experiments cannot be adequately explained in the light
of generally known physical concepts.,

Ag the studies have shown, during a change in the flow rate of a liquid there forms (is induced) a
transient vortex &. The energy spent on producing an induced vortex during any kind of change in the flow
rate impedes this change, i.e., Ava = —dé/dt, where ApLV denotes the loss of pressure head in the hydro
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system on inducing the vortex &, The vortex and the flow rate of a liquid are related by a simple propor-
tion: & = LyQ, Coefficient L, will be called the vortical inductance,

When the flow of a liquid is transient, the inertia of the liquid behaves in an analogous manner as the
induced vortex, The energy spent on overcoming the inertia of a liquid during any kind of change in the
flow rate impedes this change, i.e., this energy is reactive in nature — like the energy spent on inducing
a vortex, The impedances to flow due to inertia, therefore, as well as the impedances due to vortex induc-
tion, are reactive hydraulic impedances, and we will call them hydraulic inductive reactances [4]; they may
be characterized by the hydraulic inductance L, , which is made up of the vortical inductance Ly and the
inertial inductance Ly.

As a unit of hydraulic inductance we have chosen the value at which a 1 kg/cm? (~10° N/m? pressure
head is lost when the flow rate of a liquid under transient conditions changes uniformly by 1 m®/sec per

second, This unit has been called the king (koéffitsient induktsii gidraulicheskoi — hydraulic induction co-
efficient),

In addition to the hydraulic reactances, the flow of an incompressible viscous fluid also encounters
impedances due to friction forces and eddies, and the energy spent on overcoming those is converted to
heat, These impedances have been called hydraulic resistances,

The ratio of hydraulic reactances to hydraulic resistances determines the length of the transient

period, This ratio is expressed mathematically as t = Ly, /Ry, where the quantity Ry, defines the hydraulic
resistances,

The phenomenon of hydraulic induction which we have discovered leads us now to a new equation which
will fully describe the processes occurring during transients in the flow of an incompressible viscous fluid
through hydro systems with long pipelines and local constrictions, Unlike the well-known fundamental equa-
tion for the transient flow of an incompressible viscous fluid,the new equation contains an additional term
which accounts for the energy lost in inducing a vortex,
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